Central cardiovascular hemodynamic response to unilateral handgrip exercise with blood flow restriction


Aim: Exercise training with blood flow restriction (BFR) increases muscle size and strength. However, there is limited investigation into the effects of BFR on cardiovascular health, particularly central hemodynamic load. Purpose: To determine the effects of BFR exercise on central hemodynamic load (heart rate—HR, central pressures, arterial wave reflection, and aortic stiffness). Methods: Fifteen males (age = 25 ± 2 years; BMI = 27 ± 2 kg/m2, handgrip max voluntary contraction-MVC = 50 ± 2 kg) underwent 5-min bouts (counter-balanced, 10 min rest between) of rhythmic unilateral handgrip (1 s squeeze, 2 s relax) performed with a moderate-load (60% MVC) with and without BFR (i.e., 71 ± 5% arterial inflow flow reduction, assessed via Doppler ultrasound), and also with a low-load (40% MVC) with BFR. Outcomes included HR, central mean arterial pressure (cMAP), arterial wave reflection (augmentation index, AIx; wave reflection magnitude, RM%), aortic arterial stiffness (pulse wave velocity, aPWV), and peripheral (vastus lateralis) microcirculatory response (tissue saturation index, TSI%). Results: HR increased above baseline and time control for all handgrip bouts, but was similar between the moderate load with and without BFR conditions (moderate-load with BFR = + 9 ± 2; moderate-load without BFR = + 8 ± 2 bpm, p < 0.001). A similar finding was noted for central pressure (e.g., moderate load with BFR, cMAP = + 14 ± 1 mmHg, p < 0.001). No change occurred for RM% or AIx (p > 0.05) for any testing stage. TSI% increased during the moderate-load conditions (p = 0.01), and aPWV increased above baseline following moderate-load handgrip with BFR only (p = 0.012). Conclusions: Combined with BFR, moderate load handgrip training with BFR does not significantly augment central hemodynamic load during handgrip exercise in young healthy men.

European Journal of Applied Physiology