Purpose: The present study aimed to analyze: 1) the reliability of the tissue saturation index (TSI) and ratings of perceived discomfort (RPD) responses wearing a neoprene practical cuff (PrC), comparing with the responses from traditional (TrC) pneumatic cuffs (study I); 2) the effects of PrC on metabolic (blood lactate concentration, BLC), perceptual (rate of perceived effort, RPE) and kinematic responses at sub-maximal swimming velocities (study II). Methods: Study I; 1) PrC test-retest at rest and during swimming ergometer exercise; 2) BFR at rest with TrC inflated to different percentages of the minimum arterial occlusion pressure (MAOP; 60, 80, 100, 120 and 140%). Test-retest reliability of TSI and RPD was assessed by the intraclass correlation coefficient (ICC) and comparisons among conditions were analyzed by one-way repeated-measures ANOVA. Study II; 1) 50, 200 and 400 m swimming performances; 2) sub-maximal incremental swimming protocol with and without PrC. Two-way repeated measures ANOVA was used to compare all variables during sub-maximal velocities. Results: TSI (ICC = 0.81; 95%CI 0.62–0.91) and RPD (ICC = 0.97; 95%CI 0.94–0.99) were reliable under restricted exercise using PrC. TSI during restricted exercise was lower (p textless.001) compared to unrestricted exercise (6.8 ± 6.1% vs. 21.6 ± 8.2% of physiological normalization). PrC showed higher BLC only at or above 91% of critical velocity (p textless .03), while stroke rate and RPE were higher (p textless .005), and stroke length was lower (p textless .03) during all swimming velocities. Conclusion: This easy-to-handle and affordable practical BFR device increased physiological stress at sub-maximal efforts which could be an additional training tool for swimmers.