A 30-Min Rest Protocol Does Not Affect W′, Critical Power, and Systemic Response


PURPOSE: This study aimed to assess and compare the systemic response of oxygen uptake kinetics and muscle deoxygenation between a 30-min rest protocol and a multivisit protocol on the parameters of the power-duration relationship (i.e., critical power [CP] and W'). METHODS: Nine endurance-trained triathletes reported to the laboratory on five occasions: a preliminary graded exercise test and a familiarization, a 30-min single-visit protocol (time trials of 10, 5, and 2 min in that order interspersed with 30 min rest), and a multivisit protocol (time trials of 10, 5, and 2 min in randomized order interspersed by >24 h rest). Heart rate (HR) was recorded continuously, respiratory gases were measured breath by breath, and deoxygenation was recorded at 10 Hz using near-infrared spectroscopy (NIRS) during all tests. Blood lactate (BLa-) concentration was measured before all time trials. Maximal HR (HRmax), oxygen uptake (V˙O2) during the first 2 min (V˙O2onset), mean response time, end-exercise V˙O2 (V˙O2peak), V˙O2 amplitude (amplV˙O2), O2 deficit, NIRS $τ$, amplitude (amplNIRS), and time delay were assessed. To compare the two protocols and to assess the differences in W' and CP, a paired sample t-test was used as well as a two-way ANOVA to assess the differences between trials and/or protocols, including trial-protocol interactions. RESULTS: No significant differences, and trivial effect sizes, were found for W' and CP between protocols (P = 0.106-0.114, d < 0.01-0.08). Furthermore, no significant differences between protocols were found for all parameters, except for [BLa-]. Significant differences between trials were found for V˙O2ampl, V˙O2onset, NIRS $τ$, amplNIRS, [BLa-], and HRmax. CONCLUSION: Results suggest that W' and CP can be determined using the 30-min rest protocol without confounding effects of previous severe exercise compared with the multivisit protocol.

Medicine & Science in Sports & Exercise