Investigation of frontal lobe activation with fNIRS and systemic changes during video gaming

Abstract

Frontal lobe activation caused by tasks such as videogames can be investigated using multichannel near-infrared spectroscopy (fNIRS), sometimes called optical topography. The aims of this study are to investigate the effects of video gaming (fighting and puzzle games) in the brain and the systemic physiology and to determine whether systemic responses during the gaming task are associated with the measurement of localised cerebral haemodynamic changes as measured by fNIRS. We used a continuous-wave 8-channel fNIRS system to measure the changes in concentration of oxy-haemoglobin (HbO2) and deoxy-haemoglobin (HHb) and changes in total haemoglobin ($Δ$tHb = $Δ$HbO2 + $Δ$HHb) over the frontal lobe in 30 healthy volunteers. The Portapres system was used to measure mean blood pressure (MBP) and heart rate (HR), and a laser Doppler was employed to measure the changes in scalp blood flow (or flux). Even though we observed significant changes in systemic variables during gaming, in particular in scalp flow, we also managed to see localised activation patterns over the frontal polar (FP1) region. However, in some channels over the frontal lobe, we also observed significant correlations between the HbO2 and systemic variables. © 2013 Springer Science+Business Media New York.

Publication
Advances in Experimental Medicine and Biology

Related