Muscle oxygenation induced by cycling exercise does not accelerate recovery kinetics following exercise-induced muscle damage in humans: A randomized cross-over study

Abstract

The aim of this study was to analyze the effects of inducing muscle oxygenation using an intermittent cycling exercise on recovery kinetics after exercise-induced muscle damage. Ten soccer players performed single-leg knee flexors exercise: 75 eccentric contractions. The day after, subjects performed an intermittent cycling exercise of 12 min (15 s work - 15 s rest)or recovered passively in a balanced and randomized cross-over design. Force, single and double-leg countermovement jumps, muscle soreness, perceived recovery and creatine kinase concentrations were assessed through a 72 h period. Oxygenation during cycling was assessed using Near Infrared Spectroscopy. Results showed an increase in knee flexors oxygenation using intermittent cycling ($Δ$HbO 2 = 70.2 ± 19.8%; $Δ$HHb = 68.2 ± 14.1%). Possibly small detrimental effect of cycling on eccentric force was found (ES = -0.58, 90% CI: -1.33 to 0.17). Small detrimental effects of cycling were found for soreness and perceived recovery. Implementing intermittent cycling exercise the day after muscle damage may be detrimental for recovery.

Publication
Respiratory Physiology and Neurobiology

Related