Cardiovascular and metabolic responses to passive hypoxic conditioning in overweight and mildly obese individuals

Abstract

Although severe intermittent hypoxi Although severe intermittent hypoxia (IH) is well known to induce deleterious cardiometabolic consequences, moderate IH may induce positive effects in obese individuals. The present study aimed to evaluate the effect of two hypoxic conditioning programs on cardiovascular and metabolic health status of overweight or obese individuals. In this randomized single-blind controlled study, 35 subjects (54 ± 9.3 yr, 31.7 ± 3.5 kg/m2) were randomized into three 8-wk interventions (three 1-h sessions per week): sustained hypoxia (SH), arterial oxygen saturation (SpO2) = 75%; IH, 5 min SpO2 = 75% – 3 min normoxia; normoxia. Ventilation, heart rate, blood pressure, and tissue oxygenation were measured during the first and last hypoxic conditioning sessions. Vascular function, blood glucose and insulin, lipid profile, nitric oxide metabolites, and oxidative stress were evaluated before and after the interventions. Both SH and IH increased ventilation in hypoxia (+1.8 ± 2.1 and +2.3 ± 3.6 L/min, respectively; P < 0.05) and reduced normoxic diastolic blood pressure (-12 ± 15 and -13 ± 10 mmHg, respectively; P < 0.05), whereas changes in normoxic systolic blood pressure were not significant (+3 ± 9 and -6 ± 13 mmHg, respectively; P > 0.05). IH only reduced heart rate variability (e.g., root-mean-square difference of successive normal R-R intervals in normoxia -21 ± 35%; P < 0.05). Both SH and IH induced no significant change in body mass index, vascular function, blood glucose, insulin and lipid profile, nitric oxide metabolites, or oxidative stress, except for an increase in superoxide dismutase activity following SH. This study indicates that passive hypoxic conditioning in obese individuals induces some positive cardiovascular and respiratory improvements despite no change in anthropometric data and even a reduction in heart rate variability during IH exposure.

Publication
American Journal of Physiology - Regulatory Integrative and Comparative Physiology

Related