Land vs. water HIIE effects on muscle oxygenation and physiological parameter responses in postmenopausal women

Abstract

Muscle oxygenation (MO) status is the dynamic balance between O2 utilization and O2 delivery. Low-impact high-intensity interval exercise MO responses in the exercise and recovery stage are still unclear. We compared the differences in MO and physiological parameters between high-intensity interval water-based exercise (WHIIE) and high-intensity interval land bike ergonomic exercise (LBEHIIE) in postmenopausal women. Eleven postmenopausal women completed WHIIE or LBEHIIE in counter-balanced order. Eight sets were performed and each exercise set included high intensity with 80% heart rate reserve (HRR) in 30 s and dynamic recovery with 50% HRR in 90 s. Muscle tissue oxygen saturation index (TSI), total hemoglobin (tHb), oxy-hemoglobin (O2Hb), and deoxy-hemoglobin (HHb) were recorded. Blood lactate, heart rate and rating of perceived exertion (RPE) were measured at pre and post-exercise. Under similar exercise intensity, RPE in WHIIE was lower than that in LBEHIIE. The heart rate in WHIIE was lower than that in LBEHIIE at 1 and 2 min post-exercise. During the dynamic recovery, TSI, tHb, and O2Hb in water were higher than on land. A negative correlation was found between the change in TSI and lactate concentration (r = − 0.664). WHIIE produced greater muscle oxygenation during dynamic recovery. Muscle TSI% was inversely related to blood lactate concentration during exercise in water.

Publication
Scientific Reports

Related