Handgrip exercise induces sex‐specific mean arterial pressure and oxygenation responses but similar performance fatigability

Abstract

Women exhibit an attenuated exercise pressor reflex (EPR) when compared to men. The influence of sex-specific mechanisms related to the EPR and performance fatigability remain to be fully elucidated. The purpose was to determine the impact of oxygenation and metabolic efficiency on sex-specific performance fatigability and increases in mean arterial pressure (MAP) resulting from a fatiguing isometric handgrip (IHG). Twenty-four adults volunteered to perform an IHG at 25% at maximal voluntary isometric contractions (MVICs). Pre- and posttest MVICs were conducted to quantify performance fatigability. MAP was collected at 3 timepoints. A near-infrared spectroscopy device was attached to the forearm to derive the following signals: oxy[haem], deoxy[haem], total[haem], and diff[haem]. These values were normalized and examined across time in 5% segments of time-to-task-failure. Metabolic efficiency was defined as the ratio force:deoxy[haem]. During the IHG, there was a decline in oxy[haem] for the men (b = −0.075), whereas the women demonstrated an increase (b = 0.117). For the men, the diff[haem] tracked the mean oxy[haem] response, but there was no change for the women. The men exhibited greater declines in metabolic efficiency, yet there were no sex differences in PF (46.6 ± 9.7% vs. 45.5 ± 14.2%). For relative MAP, the men (24.5 ± 15.1%) exhibited a greater (p = .03) increase than the women (11.0 ± 17.6%). These results indicated the EPR was more prominent for the men, perhaps due to differences in mechanical stimuli and a lack of ability to maintain metabolic efficiency. However, these physiological differences did not induce a sex difference in performance fatigability.

Publication
Clinical Physiology and Functional Imaging

Related