Near-Infrared Spectroscopy of the Bladder: New Parameters for Evaluating Voiding Dysfunction

Abstract

We describe innovative methodology for monitoring alterations in bladder oxygenation and haemodynamics in humans using near-infrared spectroscopy (NIRS). Concentrations of the chromophores oxygenated (O 2 Hb) and deoxygenated (HHb) haemoglobin and their sum (total haemoglobin) differ during bladder contraction in health and disease. A wireless device that incorporates three paired light emitting diodes (wavelengths 760 and 850 nanometers) and silicon photodiode detector collects data transcutaneously (10 Hz) with the emitter/detector over the bladder during spontaneous bladder emptying. Data analysis indicates comparable patterns of change in chromophore concentration in healthy children and adults (positive trend during voiding, predominantly due to elevated O 2 Hb), but different changes in symptomatic subjects with characteristic chromophore patterns identified for voiding dysfunction due to specific pathophysiologies: bladder outlet obstruction (males), overactive bladder (females), and nonneurogenic dysfunction (children). Comparison with NIRS muscle data suggests altered bladder haemodynamics and/or oxygenation may underlie voiding dysfunction offering new insight into the causal physiology.

Publication
International Journal of Spectroscopy

Related