We examined the effect of ischaemic preconditioning (IPC) on severe-intensity exercise performance, pulmonary oxygen uptake ( ) kinetics, skeletal muscle oxygenation (muscle tissue O2 saturation index) and mitochondrial respiration. Eight men underwent contralateral IPC (4 × 5 min at 220 mmHg) or sham-control (SHAM; 20 mmHg) before performing a cycling time-to-exhaustion test (92% maximum aerobic power). Muscle (vastus lateralis) biopsies were obtained before IPC or SHAM and ∼1.5 min postexercise. The time to exhaustion did not differ between SHAM and IPC (249 ± 37 vs. 240 ± 32 s; P = 0.62). Pre- and postexercise ADP-stimulated (P) and maximal (E) mitochondrial respiration through protein complexes (C) I, II and IV did not differ (P textgreater 0.05). Complex I leak respiration was greater postexercise compared with baseline in SHAM, but not in IPC, when normalized to wet mass (P = 0.01 vs. P = 0.19), mitochondrial content (citrate synthase activity, P = 0.003 vs. P = 0.16; CI+IIP, P = 0.03 vs. P = 0.23) and expressed relative to P (P = 0.006 vs. P = 0.30) and E (P = 0.004 vs. P = 0.26). The mean response time was faster (51.3 ± 15.5 vs. 63.7 ± 14.5 s; P = 0.003), with a smaller slow component (270 ± 105 vs. 377 ± 188 ml min−1; P = 0.03), in IPC compared with SHAM. The muscle tissue O2 saturation index did not differ between trials (P textgreater 0.05). Ischaemic preconditioning expedited kinetics and appeared to prevent an increase in leak respiration through CI, when expressed proportional to E and P evoked by severe-intensity exercise, but did not improve exercise performance.