Cocoa flavanols protect cognitive function, cerebral oxygenation, and mental fatigue during severe hypoxia

Abstract

We show for the first time that cocoa flavanols exert a neuroprotective effect during severe hypoxia. Following acute cocoa flavanol ingestion, we observed improvements in cognition, cerebral oxygenation, and subjective fatigue during normoxia and severe poikilocapnic hypoxia. Cocoa flavanols did not improve cognition during severe isocapnic hypoxia, suggesting a possible interaction with carbon dioxide. , We tested the hypothesis that ingestion of cocoa flavanols would improve cognition during acute hypoxia equivalent to 5,500 m altitude (partial pressure of end-tidal oxygen = 45 mmHg). Using placebo-controlled double-blind trials, 12 participants ingested 15 mg·kg −1 of cocoa flavanols 90 min before completing cognitive tasks during normoxia and either poikilocapnic or isocapnic hypoxia (partial pressure of end-tidal carbon dioxide uncontrolled or maintained at the baseline value, respectively). Cerebral oxygenation was measured using functional near-infrared spectroscopy. Overall cognition was impaired by poikilocapnic hypoxia (main effect of hypoxia, P = 0.008). Cocoa flavanols improved a measure of overall cognitive performance by 4% compared with placebo (effect of flavanols, P = 0.033) during hypoxia, indicating a change in performance from “low average” to “average.” The hypoxia-induced decrease in cerebral oxygenation was two-fold greater with placebo than with cocoa flavanols (effect of flavanols, P = 0.005). Subjective fatigue was increased by 900% with placebo compared with flavanols during poikilocapnic hypoxia (effect of flavanols, P = 0.004). Overall cognition was impaired by isocapnic hypoxia (effect of hypoxia, P = 0.001) but was not improved by cocoa flavanols (mean improvement = 1%; effect of flavanols, P = 0.72). Reaction time was impaired by 8% with flavanols during normoxia and further impaired by 11% during isocapnic hypoxia (effect of flavanols, P = 0.01). Our findings are the first to show that flavanol-mediated improvements in cognition and mood during normoxia persist during severe oxygen deprivation, conferring a neuroprotective effect. NEW & NOTEWORTHY We show for the first time that cocoa flavanols exert a neuroprotective effect during severe hypoxia. Following acute cocoa flavanol ingestion, we observed improvements in cognition, cerebral oxygenation, and subjective fatigue during normoxia and severe poikilocapnic hypoxia. Cocoa flavanols did not improve cognition during severe isocapnic hypoxia, suggesting a possible interaction with carbon dioxide.

Publication
Journal of Applied Physiology

Related