Mental workload classification using convolutional neural networks based on fNIRS-derived prefrontal activity

Abstract

Abstract Background Functional near-infrared spectroscopy (fNIRS) is a tool to assess brain activity during cognitive testing. Despite its usefulness, its feasibility in assessing mental workload remains unclear. This study was to investigate the potential use of convolutional neural networks (CNNs) based on functional near-infrared spectroscopy (fNIRS)-derived signals to classify mental workload in individuals with mild cognitive impairment. Methods Spatial images by constructing a statistical activation map from the prefrontal activity of 120 subjects with MCI performing three difficulty levels of the N-back task (0, 1, and 2-back) were used for CNNs. The CNNs were evaluated using a 5 and 10 -fold cross-validation method. Results As the difficulty level of the N-back task increased, the accuracy decreased and prefrontal activity increased. In addition, there was a significant difference in the accuracy and prefrontal activity across the three levels ( p ’s textless 0.05). The accuracy of the CNNs based on fNIRS-derived spatial images evaluated by 5 and 10-fold cross-validation in classifying the difficulty levels ranged from 0.83 to 0.96. Conclusion fNIRS could also be a promising tool for measuring mental workload in older adults with MCI despite their cognitive decline. In addition, this study demonstrated the feasibility of the classification performance of the CNNs based on fNIRS-derived signals from the prefrontal cortex.

Publication
BMC Neurology

Related