Identifying and tracking the recovery of patients with mild traumatic brain injuries (mTBI) has remained elusive due to the lack of non-invasive, objective neuroimaging techniques. The purpose of this case study was to provide a proof of concept for performing a combined functional near-infrared spectroscopy (fNIRS) and 60-s psychomotor vigilance testing (60-s PVT) that can identify and track the recovery of a patient with a mTBI. The patient was a 19-year-old female acrobatics and tumbling athlete who was kicked in the left temple by a teammate. Video footage of the injury was utilized to determine the region of impact and weekly fNIRS and 60-s PVT assessments were performed throughout the 10 weeks of recovery. The patient was cleared for activity based upon symptoms at week 7; however, the patient reported increased symptomology during weeks 7 and 8 following exercise. Our fNIRS neuroimaging technique was able to detect the systemic physiological responses associated with mitochondrial dysregulation and oxygen extraction fraction at weeks 1 to 8. Based on our findings, the patient remained injured at week 8, and that the physical activity performed at weeks 7 and 8 may have regressed recovery and induced additional dysfunction resulting in increased recovery time. In conclusion, we were able to identify and track the recovery of our patient with a mTBI using our non-invasive combined fNIRS and 60-s PVT approach. Results provided real time physiological responses associated with the injury throughout the recovery process.