Laparoscopic surgery can be exhausting and frustrating, and the cognitive load experienced by surgeons may have a major impact on patient safety as well as healthcare economics. As cognitive load decreases with increasing proficiency, its robust assessment through physiological data can help to develop more effective training and certification procedures in this area. We measured data from 31 novices during laparoscopic exercises to extract features based on cardiac and ocular variables. These were compared with traditional behavioural and subjective measures in a dual-task setting. We found significant correlations between the features and the traditional measures. The subjective task difficulty, reaction time, and completion time were well predicted by the physiology features. Reaction times to randomly timed auditory stimuli were correlated with the mean of the heart rate (r= - 0.29) and heart rate variability (r= 0.4). Completion times were correlated with the physiologically predicted values with a correlation coefficient of 0.84. We found that the multi-modal set of physiology features was a better predictor than any individual feature and artificial neural networks performed better than linear regression. The physiological correlates studied in this paper, translated into technological products, could help develop standardised and more easily regulated frameworks for training and certification.