Purpose: The recovery of muscle oxygen consumption (mV˙ O2) after exercise provides a measure of skeletal muscle mitochondrial capacity, as more and better-functioning mitochondria will be able to restore mV˙ O2 faster to the pre-exercise state. The …
Introduction: Spinal cord injury (SCI) results in skeletal muscle atrophy, increases in intramuscular fat, and reductions in skeletal muscle oxidative capacity. Endurance training elicited with neuromuscular electrical stimulation (NMES) may reverse …
Physical inactivity reduces, and exercise training increases, mitochondrial capacity. In rodents, exercise training effects can be augmented by large doses of resveratrol supplementation but whether this can occur in humans with a smaller dose is …
The purpose of this study was to assess the reproducibility of resting blood flow, resting oxygen consumption, and mitochondrial capacity in skeletal muscle using near-infrared spectroscopy (NIRS). We also determined the influence of 2 exercise …
PURPOSE: Previous studies have used near-infrared spectroscopy (NIRS) to measure skeletal muscle mitochondrial capacity. This study tested the hypothesis that NIRS-measured mitochondrial capacity would improve with endurance exercise training and …
Near-infrared spectroscopy (NIRS) is a well-known method used to measure muscle oxygenation and hemodynamics in vivo. The application of arterial occlusions allows for the assessment of muscle oxygen consumption (mVO 2) using NIRS. The aim of this …