Fatigability, oxygen uptake kinetics and muscle deoxygenation in incomplete spinal cord injury during treadmill walking

Abstract

Purpose: The purpose of the present study was to characterize hypothesized relationships among fatigability and cardiorespiratory fitness in individuals with chronic motor-incomplete SCI (iSCI) during treadmill walking. The theoretical framework was that exacerbated fatigability would occur concomitantly with diminished cardiorespiratory fitness in people with iSCI. Methods: Subjects with iSCI (n = 8) and an able-bodied reference group (REF) (n = 8) completed a 6-min walking bout followed by a walking bout of 30-min or until volitional exhaustion, both at a self-selected walking speed. Fatigability was assessed using both perceived fatigability and performance fatigability measures. Pulmonary oxygen uptake kinetics (VO2 on-kinetics) was measured breath-by-breath and changes in deoxygenated hemoglobin/myoglobin concentration (∆[HHb]) of the lateral gastrocnemius was measured by near-infrared spectroscopy. Adjustment of VO2 and ∆[HHb] on-kinetics were modeled using a mono-exponential equation. Results: Perceived fatigability and performance fatigability were 52% and 44% greater in the iSCI group compared to the REF group (p = 0.003 and p = 0.004). Phase II time constant ($τ$p) of VO2 on-kinetics and ∆[HHb] ½ time during resting arterial occlusion were 55.4% and 16.3% slower in iSCI vs REF (p < 0.01 and p = 0.047, respectively). Conclusions: The results of the present study may suggest that compromised O2 delivery and/or utilization may have contributed to the severity of fatigability in these individuals with iSCI. The understanding of the extent to which fatigability and VO2 and $Δ$[HHb] on-kinetics impacts locomotion after iSCI will assist in the future development of targeted interventions to enhance function.

Publication
European Journal of Applied Physiology

Related