When is Higher Level Cognitive Control Needed for Locomotor Tasks Among Patients with Parkinson's Disease?

Abstract

Turning has been implicated as a complex task that requires both motor and cognitive resources. Accumulating evidence shows that patients with Parkinson’s disease (PD) require more steps and more time to complete a turn, however, the role of the prefrontal cortex during turning is not clear. Forty nine patients with PD without freezing of gait (mean age 71.7 ± 1.0 years; 67% men, disease duration 9.7 ± 1.3 years) performed motor and cognitive tests. Prefrontal activation, specifically in Brodmann area 10 (BA10), during turning and usual walking was measured using functional near infrared spectroscopy (fNIRS). The patients with PD were further divided into two subgroups with high and low functional status based on limitations in community ambulation. General Linear Model analysis adjusted for age, gender, disease duration and turn duration was used to assess differences between tasks and subgroups of patients with PD. In addition, Pearson’s correlation was performed to assess association between BA10 activation and motor and cognitive scores. Activation in BA10 increased during walking (p < 0.001), while it decreased during turning (p = 0.006). A comparison between the two subgroups of patients with PD revealed that patients with relatively better ambulation decreased prefrontal activation during turning, as compared to patients with relatively worse ambulation (p < 0.001). These findings are the first to show that BA10 plays a different role during turning and walking and that ambulation status may alter BA10 activation during turning. Higher prefrontal activation during turning in the subgroup of patients with relatively worse ambulation may reflect a compensatory attempt at improving performance.

Publication
Brain Topography

Related